3  Validation of Transfer Functions

Published

June 24, 2025

Abstract

Lorem ipsum

3.1 Mathematical derivation of the transfer functions of the biquad

First, the individual equations of the operational amplifiers were set up:

\[ V_1 = -(V_3 + V_4) \tag{3.1}\]

\[ V_2 = -\left(\frac{1}{s} \omega_0 \cdot V_1 \right) \tag{3.2}\]

\[ V_3 = -\left(\frac{1}{s} \omega_0 \cdot V_2 \right) \tag{3.3}\]

\[ V_4 = -\left( \frac{V_2}{Q} + H_0 \cdot V_i \right) \tag{3.4}\]

3.2 Calculation of \(\frac{V_2}{V_i}\)

Insert Equation 3.1 into Equation 3.2 :

\[\begin{align} V_2 &= -\frac{\omega_0}{s} \cdot V_1 = -\frac{\omega_0}{s} \cdot (-V_3 - V_4) \nonumber \\ &= -\frac{\omega_0}{s} \cdot \left( \frac{\omega_0}{s} \cdot V_2 + \frac{1}{Q} \cdot V_2 + H_0 \cdot V_i \right) \label{eq:v2_expanded} \end{align}\]

Summarizing results in:

\[\begin{align} V_2 &= -\frac{\omega_0^2}{s^2} \cdot V_2 - \frac{\omega_0}{s Q} \cdot V_2 - \frac{\omega_0}{s} H_0 \cdot V_i \\ \Rightarrow \frac{\omega_0}{s} H_0 \cdot V_i &= -\left( \frac{\omega_0^2}{s^2} + \frac{\omega_0}{s Q} + 1 \right) V_2 \end{align}\]

Resolve to \(\frac{V_2}{V_i}\):

\[ \frac{V_2}{V_i} = \frac{\frac{\omega_0}{s} H_0}{ -\left( \frac{\omega_0^2}{s^2} + \frac{\omega_0}{s Q} + 1 \right)} = -\frac{ \frac{s}{\omega_0} H_0 }{ 1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \tag{3.5}\]

3.3 Transfer-function \(\frac{V_3}{V_i}\):

Insert Equation 3.5 into Equation 3.3 :

\[ V_3 = -\frac{\omega_0}{s} \cdot V_2 = -\frac{\omega_0}{s} \cdot \left( -\frac{\frac{s}{\omega_0} H_0 }{ 1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \cdot V_i \right) \]

\[ V_3 = \left( \frac{H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \right) V_i \]

\[ \Rightarrow \frac{V_3}{V_i} = \frac{H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \tag{3.6}\]

3.4 Transfer-function \(\frac{V_4}{V_i}\):

Insert Equation 3.5 into Equation 3.4 :

\[\begin{align} V_4 &= -\left( \frac{1}{Q} \cdot V_2 + H_0 \cdot V_i \right) = -\left( \frac{1}{Q} \cdot \left( -\frac{ \frac{s}{\omega_0} H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \cdot V_i \right) + H_0 \cdot V_i \right) \nonumber \\ &= \left( \frac{\frac{s}{\omega_0 Q} H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} - H_0 \right) V_i \\ &= \left( \frac{ \frac{s}{\omega_0 Q} - \left(1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} \right) }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \cdot H_0 \right) V_i \\ &= - \frac{ \left( 1 + \frac{s^2}{\omega_0^2} \right) H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \cdot V_i \\ \Rightarrow \frac{V_4}{V_i} &= - \frac{ \left( 1 + \frac{s^2}{\omega_0^2} \right) H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \end{align}\]

Note: In the task booklet, the following equation is given here:

\[ \frac{V_4}{V_i} = \frac{ \left( 1 + \frac{s^2}{\omega_0^2} \right) H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} } \]

This corresponds to a negation of my own result.

3.5 Calculation of the transfer function \(\frac{V_1}{V_i}\):

Based on equation Equation 3.1 : \[V_1 = -(V_3 + V_4)\]

Using the transfer-function Equation 3.6 for \(V_3\):

\[ \frac{V_3}{V_i} = \frac{H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \]

Case 1: Use of the negated form of the transfer function of \(V_4\) from my own derivation:

\[ \frac{V_4}{V_i} = - \frac{\left(1 + \frac{s^2}{\omega_0^2} \right) \cdot H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \tag{3.7}\]

Inserting Equation 3.6 and Equation 3.7 into Equation 3.1 results in:

\[ V_1 = -\left( V_3 + V_4 \right) \]

\[ V_1 = -\left( \frac{H_0}{D} + \left( -\frac{ \left( 1 + \frac{s^2}{\omega_0^2} \right) H_0 }{D} \right) \right) V_i \]

\[ V_1 = \left( \frac{ \left( \frac{s^2}{\omega_0^2} \right) H_0 }{D} \right) V_i \quad \text{where } D = 1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2} \]

\[ \Rightarrow \frac{V_1}{V_i} = \frac{ \left( \frac{s^2}{\omega_0^2} \right) H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \tag{3.8}\]

Case 2: Use the positive form of the transfer function of \(V_4\) as specified in the task booklet:

\[ \frac{V_4}{V_i} = \frac{\left(1 + \frac{s^2}{\omega_0^2} \right) \cdot H_0}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \tag{3.9}\]

Insert into Equation 3.1 :

\[\begin{align} V_1 &= -\left( V_3 + V_4 \right) = -\left( \frac{H_0}{D} + \frac{ \left( 1 + \frac{s^2}{\omega_0^2} \right) H_0 }{D} \right) V_i \nonumber \\ &= -\left( \frac{ \left( 2 + \frac{s^2}{\omega_0^2} \right) H_0 }{D} \right) V_i \\ \Rightarrow \frac{V_1}{V_i} &= - \frac{ \left( 2 + \frac{s^2}{\omega_0^2} \right) H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \label{eq:tf_v1_falsch} \end{align}\]

3.6 Repeated calculation of the Transfer-function \(\frac{V_2}{V_i}\) via \(V_1\):

Based on the correct function for \(V_1\) Equation 3.8 :

\[ \frac{V_1}{V_i} = \frac{ \frac{s^2}{\omega_0^2} \cdot H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \]

Using the known relationship \(V_2 = -\frac{\omega_0}{s} \cdot V_1\):

\[ V_2 = -\frac{\omega_0}{s} \cdot V_1 \]

\[ V_2 = -\frac{\omega_0}{s} \cdot \frac{ \frac{s^2}{\omega_0^2} \cdot H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \cdot V_i \]

\[ V_2 = -\frac{ \frac{s}{\omega_0} \cdot H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \cdot V_i \]

\[ \Rightarrow \frac{V_2}{V_i} = - \frac{\frac{s}{\omega_0} H_0 }{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \tag{3.10}\]

A comparison of the two transfer functions \(\frac{V_2}{V_i}\) Equation 3.5 and Equation 3.10 shows that the error is due to equation \(\frac{V_4}{V_1}\) since the derivation of \(\frac{V_1}{V_i}\) remains correct.

3.7 Conclusion

Only the use of the negated form of \(\frac{V_4}{V_i}\) from Equation 3.7 leads to a consistent result for \(\frac{V_1}{V_i}\) according to Equation 3.8 . The version from the exercise booklet (Equation 3.9) therefore appears to be incorrect.