Impedanz, Admittanz und Leistung#

Widerstandsoperator#

u/i-Verhalten

\[ \frac{\underline{u}(t)}{\underline{i}(t)} = \frac{\underline{\hat{U}}e^{j \omega t}}{\underline{\hat{I}}e^{j \omega t}} = \frac{\hat{U}}{\hat{I}} e^{j(\varphi_u \varphi_i)} = \underline{Z} \]

Impedanz

(17)#\[\begin{align} \underline{Z} &= \frac{\underline{u}(t)}{\underline{i}(t)} = \frac{\underline{\hat{U}}e^{j \omega t}}{\underline{\hat{I}}e^{j \omega t}} = \frac{\hat{U}}{\hat{I}}e^{\varphi_u-\varphi_i} \\ &= Z e^{j \varphi_z} = Z \left( \cos(\varphi_z) + j \sin(\varphi_z) \right) \\ &= \operatorname{Re}{\underline{Z}} + j \operatorname{Im}{\underline{Z}} \\ &= R + j X \end{align}\]

Eigenschaften

(18)#\[\begin{align} Z &= \lvert\underline{Z}\lvert = \sqrt{R^2 + X^2} & &\mbox{Scheinwiderstand} \\ R &= \operatorname{Re}{\underline{Z}} & &\mbox{Wirkwiderstand (Resistanz)} \\ X &= \operatorname{Im}{\underline{Z}} & &\mbox{Blindwiderstand (Reaktanz)} \\ \tan(\varphi_z) &= \frac{\operatorname{Im}{\underline{Z}}}{\operatorname{Re}{\underline{Z}}} = \frac{X_r}{R_r} & & \\ \varphi_z &= \varphi_u - \varphi_i = \arctan\left(\frac{X_r}{R_r}\right) & & \end{align}\]

Leitwertoperator#

Harmonische Anregung

(19)#\[\begin{align} u(t) &= \hat{U} \cos(\omega t + \varphi_u) & \underline{u}(t) &= \underline{\hat{U}} e^{j \omega t} \\ i(t) &= \hat{I} \cos(\omega t + \varphi_i) & \underline{i}(t) &= \underline{\hat{I}} e^{j \omega t} \end{align}\]

Admittanz

(20)#\[\begin{align} \underline{Y} &= \frac{\underline{i}(t)}{\underline{u}(t)} = \frac{\underline{\hat{I}}e^{j \omega t}}{\underline{\hat{U}}e^{j \omega t}} = \frac{\hat{I}}{\hat{U}}e^{\varphi_i-\varphi_u} \\ &= Y e^{j \varphi_y} = Y \left( \cos(\varphi_y) + j \sin(\varphi_y) \right) \\ &= \operatorname{Re}{\underline{Y}} + j \operatorname{Im}{\underline{Y}} \\ &= G + j B \end{align}\]

Eigenschaften

(21)#\[\begin{align} Y &= \lvert\underline{Y}\lvert = \sqrt{G^2 + B^2} & &\mbox{Scheinleitwert} \\ G &= \operatorname{Re}{\underline{Y}} & &\mbox{Wirkleitwert (Konduktanz)} \\ B &= \operatorname{Im}{\underline{Y}} & &\mbox{Blindleitwert (Suszeptanz)} \\ \tan(\varphi_y) &= \frac{\operatorname{Im}{\underline{Y}}}{\operatorname{Re}{\underline{Y}}} = \frac{B}{G} & & \\ \varphi_y &= \varphi_i - \varphi_u = \arctan\left(\frac{B}{G}\right) & & \end{align}\]

Vergleich von RLC-Netzwerken#

(22)#\[\begin{align} \mbox{Zeitbereich} &: & u &= i R & u &= \frac{1}{C} \int i\, dt & u &= L \frac{di}{dt} \\ \mbox{Frequenzbereich} &: & \underline{u} &= \underline{i} R & \underline{u} &= \frac{1}{j \omega C} \underline{i} & \underline{u} &= j \omega L \underline{i} \\ \mbox{Impedanz} &: & \underline{Z} &= R & \underline{Z} &= j X_C = -\frac{j}{\omega C} & \underline{Z} &= j X_L = j \omega L \\ \mbox{Phase} &: & \varphi_Z&= 0 & \varphi_Z &= -\frac{\pi}{2} & \varphi_Z &= \frac{\pi}{2} \end{align}\]

Leistung von Wechselsignalen#

Harmonische Anregung

(23)#\[\begin{align} u(t) &= \hat{U} \cos(\omega t + \varphi_u) & i(t) &= \hat{I} \cos(\omega t + \varphi_i) \\ &= \frac{1}{2} \left( \underline{\hat{U}} e^{j \omega t} + \underline{\hat{U}}^* e^{-j \omega t}\right) & &= \frac{1}{2} \left( \underline{\hat{I}} e^{j \omega t} + \underline{\hat{I}}^* e^{-j \omega t}\right) \\ &= \operatorname{Re}{\underline{\hat{U}}e^{j \omega t}} & &= \operatorname{Re}{\underline{\hat{U}}e^{j \omega t}} \end{align}\]

Komplexe Leistung

(24)#\[\begin{align} p(t) &= u(t) \cdot i(t) \\ &= \frac{1}{4} \left( \underline{\hat{U}} e^{j \omega t} + \underline{\hat{U}}^* e^{-j \omega t}\right) \left(\underline{\hat{I}} e^{j \omega t} + \underline{\hat{I}}^* e^{-j \omega t}\right) \\ &= \underbrace{\frac{1}{4} \left(\underline{\hat{U}} \underline{\hat{I}}^* + \underline{\hat{U}}^* \underline{\hat{I}} \right)}_{\mbox{zeitunabh. Anteil}} + \underbrace{\frac{1}{4} \left( \underline{\hat{U}} \underline{\hat{I}} e^{2j \omega t} + \underline{\hat{U}}^* \underline{\hat{I}}^* e^{-2j \omega t}\right)}_{\mbox{zeitabh. Anteil}} \end{align}\]

Definitionen

(25)#\[\begin{align} \underline{P} &= \frac{1}{4} \left(\underline{\hat{U}} \underline{\hat{I}}^* + \underline{\hat{U}}^* \underline{\hat{I}} \right), \quad \mbox{Momentanwert, konstanter Anteil bzw. linearer Mittelwert, Momentanleistung} \\ p(t) &= \frac{1}{2} \operatorname{Re}{\underline{\hat{U}}\underline{\hat{I}}^*} \\ &= \frac{1}{2} \operatorname{Re}{\hat{U}\hat{I} e^{j(\varphi_u-\varphi_i)}} \\ &= \frac{1}{2} \hat{U} \hat{I} \cos(\varphi_u-\varphi_i) \end{align}\]

Eigenschaften

(26)#\[\begin{align} S &= \lvert\underline{P}\lvert = \sqrt{P^2 + Q^2} & &\mbox{Scheinleistung} \\ P &= \operatorname{Re}{\underline{P}} & &\mbox{Wirkleistung} \\ Q &= \operatorname{Im}{\underline{P}} & &\mbox{Blindleistung} \end{align}\]

Literaturverzeichnis#